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ABSTRACT

Several Monte Carlo techniques are compared in the
transport of neutrons of different source energies through
two different deep-penetration problems each with two pares.
The first problem involves transmis~ion through a 200-cm
concrete slab. The second problem Is a 90° bent pipe
jacketed by concrete. In one case the pipe is vo.?d, and !.n
the other it ia filled with liquid sodium.

Calculations are made with two different Los Alamos
Monte Carlo codes: the continuous-energy code HCNP and the
multigroup code MCYC. With MCNP, aeve al techniques and
combt%ltions are evaluated: analog Monte Carlo, geometry
splitting with Russian roulette, the exponential
tr~nsformatton, a WL1iFhL w~ndow (constraining the upper and
lower particle weights to be within certain limits), and
usfng a c!omhinatinn of random walk/deterministic schemes,
With MCHG, a comparison is made between continuous-energy and
multt~:ruull Monte Cnrlo and alao twtwecn different multigroup
scntterfng ❑odels (including the onc used by the HORSE code),

S~’vt~riil unexpected r~sultp weru found in the comptirisuns
of thr various calrulattons. For ●xample, compared to
continuous-energy caleulmtiona, multigroup cnlrulation~ with
standard eroa~”nection weighting (for kth Monte Cnrlo and
S,,) undcrprmiict thv ndutron leiika~c tranamfLted throul;h thu
Zno-cm ~ollcrete al~{b by a factor Of four.

When cmstdl’ring different techniquu~ for redurtnk Lhv
produrt of v~rt~~ncr and computtn~ time with reKard to eaae of
u~l’, rulinhility, ●nd effeetivenemn, wv find RL}OmCtrIU
HpllLtlng with Ru~sfnn roulette to b a ●uperior technique,
The weight window, howuvur, appunrM to h’ mre uffectivm than
[triR!nnlly antfcipntod.



INTRODIJCTION

Several Monte Carlo techniques are compared in the transport of
neutrons of different source energies in two different deep-penetration
problews. The first problem involves transmission through a 200-cm-thick
concrete siab. The second problem is a 900 bent pipe jacketed by
concrete. In one case the pipe is filled with liquid sodium, and in
another case it is void.

In actual shielding applications, one might need to account for photon
production and transport, streaming paths, the exact compositions of the
shielding material including rebar , and other factors depending on the
problem. For example, for 14-MeV neutrons incident on 200 cm of concrete,
Oak Ridge concrete reduces the transmitted close by a factor of ten better
than does Los Alamos concrete. All the above considerations, however, are
beyond the scope of this paper.

Rather than addressing particular and detailed shielding problems, the
purpose of this paper is to apply different Monte Carlo techniques to
problems of general intsrest to the shielding community and to compare the
merits of the techniques. The problems considered here have nontrivial
attenuations, and an attempt has been uw.de to select representative
features of real shielding problems without incorporating arbitrary or
extraneous detail. In additio,l to a comparison of method~, results such cs
leakage, flux, and dose rate are presented, and we believe these results to
be reliable. Doses throughout this paper refer to biological dose and were
obtained with the ANSI1 flux-to-dose conversion factors, By providing
these benchmark-type results, others may wish to compare results from the
same problems using different calculational tools. Interesting comparisons
could be then made in terms of accuracy and efflclcncy between MCNPand
other Monte Carlo codes (such as MORSE, TRIPOLI, or SAM-CE) and other
calculational techniques such as Sn or hand calculations LlSiI18 buildup
factors.

Basically, several techniques such as the exponential transformation
and geometrical splitting with Russian roulette will be compared using the
cent?.nuous-energy code MCNP2with virtually no approximations, MCNPwitl, a
pseudo-multigroup Set of cross 8t2CtiOnt3, and a true multigroup version of
MCNPcalled MCMG.3 All calculations done with MCMGare with 30 neutron
energy groups. MCMGhas the option to represent tl]e distribution of
scattering angles for group-to-group transfers by equiprobable .osine bins

4 The pseudo-multigroupor by MORSl?-type discrete scattering angles.
cross-oection set In which the reaction cross eections have been collapsed
into 240 energy &roups for use with MCNPis referred to as the
discrete-reaction data (DRXS)t More detail~ can be obtained about MCNPand
MCMCin another paper by Thompson and Cashwell given at th?s seminar,

The amount of computer memory required for cross-~ection data for the
ten constituents of ordinary Portland concrete is given in Table 1 as ~
function of calculat!onnl method, data Met, and energy range.
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About six hours of CDC-7600 computer time were used for the
calculations reported in this paper. The multigroup calculations were done
by Deutsch, Booth did the calculations with the exponential tranafonnation
and the weight window, and the rest of the calculations were done by
Thompson.

Table 1. Neutrou Cress-Section Storage
for Portland Concrete

Mode !@Q!l10

MCNP, ENDF/B-V 297462
20 MeV < E < 0.0091.2 MeV

MCNP, E,NDF/B-IV 133091
20 MeV < E < 0.00912 feV

MCNT, DRXS (ENDF/B-IV) 42952
20 MeV < E < 0.00912 FleV

MCMG,30 ~roup 23000
20 MeV < E < 10-4 eV

MCNP, ENDF/B-V 310621
20 MeV < E < 10-5 eV

MCh’P, EYDF/B-IV 1393i6
20 MeV < E < 10-5 e~

MCNP, 3RXS (ENDF/B-IV) 45852
‘5 ev20 !i(lir < E < 10

MCNP, ENDF/B-V 56161
1C4 keV < E < 0.32 eV

.—

All calculations for this paper were done ~tth ordi,lary Portland
concrete as found in Schaeffer’s kok,5 One calculation (the pencil-beam
fission epectrum incident on a 100-cm-radfus, 200-cm-thick concrete disk)
was also done with !’le 04 concrete from the ANSI standard,6 The
competitions of these two concretes are lieted in Table 2. The transmitted
dose through the 04 concrete is 4.7 timps higher than through the ordinary
Portland concrete, while the transmitted leakage and flux are each about
5.2 times higher (theue :esults are within 5%). All following reported

results will b wilh ordinary Portland concrete.



rable 2. Concrete Compositions

—

a4 Portland
Element wt.% wt.%

H
o
Si
Ca
c
Na
M
Al
s
K
Fe

0.56
49.81
31.51
8.29

1.71
0.26
4.57
0.13
1.92
1.24

1000
52.9
33.7
4.4
0.1
1.6
0.2
3.4
--

103
1.4

P-2.339 ~/CC P=2.30 glee

All continuous-energy calculations were done with EhLOF/B-V cross
sections. However, the first problem that will be discussed, the
pencil-beam fission spectrum incident on 100-cm-radius by 200-cm-thick
cuncrete, wasalso done with ENDF/E-IV cross sections. There were no
Deceivable differences in any of the results. The Monte Carlo ❑ultigroup
calculation were done with ENDF-IV cross sections. If calculations had
ben made involving healing or photon production, thts conclusion of
equality btween IV and V may not have been true. Again, it is not the
purpose of this pa er to compare cross sections; t:is has been extensively

7done at Los Mamos E8 and elsewhere by others.

With regard to the use af different Monte Carlo tecllntques on a
varizty of application, there are no universally VR116 prescripciona. The
only truly ●ffective rule of thumb is to alwsys ❑ake t~o or three short,

●xperimental rune (may of half a minute aach) to help discover the
characteristics of the particular problem and the effect of varying #
parameter or two in a particular variance-reduction technique. There t8 r!o
substitute for practical experience to guide the approach to a p~:ticular
problem. What works in one situation in no way guarantees success in
another situation and ❑ay ●ven be harmful. A good Monte Carlo co(!e ehould
provide a variety of standard eummary and diagnostic information t~l help
understand what is happening in a given problem, In doing the calcul~tlons
for this paper, we encountered oome surprises to our intu:tion. However,
short, pr~liminmry ruti~ provided the neceaaary insight for the final runs.

Finally, before 8ettin8 down to business, comparisons between the
various techniques will be done on the kmsie of a relative fisure of merit)
FOM - l/(02t) where o in the standard ● rror associated with n result of the



calculation and t 18 the computer time required. For example, if it took
30 minutes to get a 4% error, 20.8 is the figure of ❑erit. Note that to
compare your FOM to the ones reported in this paper, you will also need to
factor in the speed of your computer system relative to ours. All
calculations reported by ua were done on a CDC-7600 computer. All reported
errors represent one etandard deviation. Note that there ia also an error
associated with the figure of merit, a variance of the variance. In the
following calculations, we attach no Significance to ~mali differences in
the FOM such as btween 62 and 55.

The factor c2t is directly related to the dollar coat of running a
job. It is important to note that the cost depends both on 02 and t; for
example, You may reduce @2 but only at a greater expense in t or vice
versa; the product of the two must be reduced to be beneficial. Not
explicit in this relation for the total cost of a job is the cost in human
time to set a Job up and the cost of the preliminary experimental run6 to
set the parameters. If you spend three days with a~ elaborate setup and
five hours of computer time refining and optimizing the parameters in the
I.x?st possible way so that your job runs in 10 minutes rather than 20, you
have lost. In all the following calculations, we usually made two or three
preliminary runs for about a half minute each. We make no claim that our
setups and figures of merit are the bes[ , but they are accep~able as being
cost-effective. Ufidoubtedly, someone can make improvements tmt probably
not without diminishing ?eturns.

VARIANCE-REDUCTIONTECHNIQUES

The successful application of the Monte C~rlo method to any deep-
penetration problem generally requires the use of one or mre
variance-reduction techniques. In Seneral, one can expect that come
techniques or combination of technique will be more effective than others
in terms of range of applicability, ●aae of use, reliability, and
performance. We meaaure performance in terms of the figure of merit
l/(c12t)* By reliability, we refer to the possibility of injudicious
selection of the parameters of a techniq~e resulting in erruneous answers
bcausc an important part of phase space may not have been sampled
adequately, if at all. Finally, ●ase of uee refers to the degrl~e of
difficulty in determining the parameters of a technique and to the
eenaitivity of performance to precise selection of the optimal parameters,

Based on many years of ●xperience and observations of users at Los
Alamoa, the moat frequently-used technique ● t Los Alamos are geometry
nplitting with Russian roulette, directional source biasing, eurvival
biasing, and a weight-cutoff game incorporating Russian roulette. These
tcchniquea are frequently used in combination. It ia as~umed that if
nenrgy and/or time cutoffc ●re appropriate for ● problem, then they have
be~n u~ed aleo. The exponential transformation is infrequently used, and
in fact, we have discouraged its use. We note all too frequently that the
les~ ●xperience a user ham, the more any of the variance reduction



techniques are abused by u~ing the techniques inappropriately, or with
oeveral techniques in conjunctionleading to conflicts, or most commonly by
biasing too heavily. A4ny of these problems -n result in a wrong answer.
It cannot be overemphasized that any variance-reduction technique ❑ust be
utsed with caution and understanding.

In the following calculations, eeveral different techniques are tried
and compared. For all problems , we compare aeometry tsplitting with Russl+n
roulette, the exponential transformation, a weight window, and DXTRAN. The
effect of running the problems in a purely analog fashion will also be
illustrated. Other techniques will also be tried but not for all cases. A
short description will Ix aiven for the main techniques used in these
calculations.

A ❑ ore detailed description can be found in Ref. 2.

GeOmetry Splitting with RubSian Roulette

MCNP does not split particle tracks upon collision tmt as a function
of spatial location. The geometry is auMivided into several cells, and
each cell is assigned an importance. When a track of weight W passes from
a cell of Importance I to a cell of hi8her importance If, the track is
split into 1’/1 tracka, each of wei8ht WI/It. (Non-integer splittin8 is
allowed, but we will consider only integral importance ratios for
simplicity.) If a track psses from a cell of importance 1’ to a cell of
lower importance I, Russian roulette is played; a track survives with
frequency 1/1’ and is assigned a new weight of WI’/I if it eurvives.
Generally, the source cell has importance of unity, and the importances
increase in the direction of the tally, The importances are chosen to keep
the track population rou8hly constant b?tween the source and the tally.

Weight Cutoff with Ruaeian Roulette

The weight cutoff la made relative to the ratio of the importance of
the source c.s1l to the im~artance of the cell where wei8ht-cutoff is about
to take place. This keeps the geometry-splitting and wei8ht-cutoff 8ames
from interfering. If a track’s WtSi8ht falls blow quantity WC2 (usually
from survival Maslng), Russian roulette is played. A track survives with
frequency MCZ/WCl and 1s assigned the weight WCl if it w:vivca. WCl and
WC2 are aenerally choeen to be 0.5 and 0.25, reapectlvely, for a starting
wei8i,t of unity ht are problem-dependent.

Exponential Transformation.—

This technique allows a track to move in a preferred direction by
artificially reducing the macroscopic total croee section in the prefer:ed
direction and increasing the c:oee eectlon in the opposite direction
●ccording to

rex = Xt(l - p~) , (1)



where
E ex = transformed total cross section,
It = true total crosb section,
P = parameter used to vsry degree,

of biasing, O < p < 1, and
11 = cosine of angle between preferred

direction and track’s velocity.

Upon collision, the track weight is ❑ultiplied by

e-pEtvs
b -—

c l-pp ‘

where s is the distance to collision. Note this car, lead to a dispersion
of weight, and that It is possible for some weights to become very large if
the tracka are travellng opposite to tt,e preferred direction.

We have found the exponential transformation by itself to h of
limited use. The dispersion of weights that it creates can result in an
unreliable sample mean while the sample variance may erroneously indicate
an acceptable precision. Furthermore, it is not clear how to choose the
biaaing parameter p, but we note that it is generally chosen too high -
especially by novice users. For the calculations of this paper, the
parameter was selected by observing the sample variance as a function of
the parameter on a few short runs.

When combined with a weight window to place a tmund on the upper and
lower weights of tracks, we have found that ths exponential transformation
can be useful. However, choosing parameters for the weight window can
furthar complicate the problem setup, ●specially for the inexperienced
user.

Weight Window

A weight window consists of an upper and a lower bund for a
particle’s weight. If the track weight is less than the lower weight
bound, Ruaafan roulatte is played and the we6ht is increaned to lie inl~ide
the window or the track is killed. If the track weight is above the upper
bound then the track la split so that the resulting tracks have their
weights within the window. The bounds of the windov can k set as a
function of energy and spatial poeftion.

This weight-window capability ie presently not a penmanent feature of
HCNP. It is available na a modification and is under ●valuation by Group
X-6 . Among other things, we are trying to learn how to uee it. It
appears that this technique has ❑erit not or,iy when used tiith the
●xponential transformation lmt in conjunct Ion with other techniques. The
bane of any varfance-reduction technique is creating a 4ispersfon of
weights and ?specially creating a few trucks with very large weighte. The
weight ulndow uppeara to reduce these problems effectively,



DXTRAN—.

In a geometry region which 16 difficult to sample adequately, the
DXTRANscheme of MCNPcan & of value. At each collision, contributions af
mcattered particles are deterruinietically transported to a spherical
neighborho d of interest. These contributions, or pseudo-particles, are
placed on a sphere surrounding the neighborhood of interest and then
transported in the ordinary random-walk manner. The parent particle giving
rise to the pseudo-particle at a collision continues its random walk, but
it is killed If it tries to enter the neighborhood during its random walk.

There are actually tvo DXTRANspheres. The pseudo-particles are
placed on an outer sphere. An inner sphtre concentric to the outer one is
used to bias the placement of pseudo-particles within the cone defined by
the inner sphere and the point of coilision.

IXTRAN has certain features in common with a point detector. It also
has the disadvantages of a detector: it can significantly increase
computation time, and it 1$ susceptible to large-weighted contributions.
For these and other reasons, success is not guaranteed when using DXTIUN,
and it (like a detector) should be used selectively and carefully.

A useful feature of MCNPis the DD input card. Thts provides
diagnostics pertaining to DXTRANor point detectors such as the
accumulative fraction of the number of contributions, the fractional
contribution, and the accumulative fraction of the total contribution - all
as a function of mearl free path away from the DXTMN sphere or detector.
Having this information from a short run, Russiar roulette -n k played on
contributions a selected number of mean free paths away. This can save
substantial computer time-

Angle Biasing

Angle biasing for the problems of this paper was not applied for two
reasons: (1) our experience with angle-biasing techniques is both limited
and discouraging, and (2) angle biasing is not a standard MCNPoption. We
have experience with sampling two different (fictitious) ●xit densit:es,
namely

l+bv
PI($-O “y” = probability of smm ling a unit solid

71
(3)

an81e stout u,v,w b<l

and
b#’ 1

pa(n) “~——- e-b 2n = probability of sampling a ul~lt solid (4)
e an81e about U,V,W b ~ O.

Both of these schemes seem to introduce a large variation Ir, particle
weights which 1s reflected in a poor varience of the rnample man. Use of
weight window improves the variance, but only to the point where the
variance ~tchee that of the w~ight window dorle,



It Is entirely possible that other angle-biasing schemes may perform
much better. In particular, angle-biasing schemes in discrete-angle ?lonte
Carlo cedes (such as TRIPOLI) can be easily fabricated to avoid large
variations in particle weights. This does not appear to k the case in
continuous-angle Monte Carlo codes (such

CONCRETE-SLAB

A major advantage of Monte Carlo is

as MCNP).

PROBLEMS

the ability to calculate with no
compromise in geometrical reality. Since the purpose of this paper is to
illustrate some variance-reduction techniques, this advantage plays no role
in this particular problem. Sn is more appropriate for this problem - but
at the pcssible expense of getting the wrong bnswer &cause of the
multigroup approximation (as will & seen later in this paper).

This problem consists of two parts. Both parts consist of a 200-cm-
long homogeneous cylinder of ordinary Portland concrete with a pencil-beam
source of fission-spectrum neutrons incident along the axis. In one case
the radius of the cylinder is 100 cm, and in the other the radius of the
cylinder is 20 cm. The object is to tally the net neutron leakage (or
current) acrcss the face opposite the source for comparison of all the
methods. However, the transmitted flux and biological dose were also
calculated by MCNP. The geometry of lmth cases is illustrated in Fig. 1.

k—COOcm—i

‘“I---F ‘O=’eEk
—

Figure 1. Concrete Slab Problems.

The source energy spectrum is defined according to the Msxwellian
representation of the fission spectrum:

where we have
source energy

chosen the parameter T = 1.30 lleV
of 1.95 tleV. A prescription that

(5)

that produces an average
was used to sample from



this spectrum for MLNP is in the Appendix. For the multigroup calculations
with MCF!G, the spectrum was analytically integrated to detenaine the group
6ources:

(6)

The group sources are listed in the Appendix.

A ehort adjoint run with UCMGplus an Sn calculation indicated that
source particles blow 3.68 MeV (this corresponds to one of the niultigroup
lmundaries) ❑ade few tally contributions. More precisely, abut 10Z of the
transmitted leakage results from aiource neutrons blow 3.68 MeV.
Therefore, the source spectrum was sampled for energies only above 3.68
MeV. These high-energy-source particles account for 12.929% of the total
source particles in the unaltered spectrum. Therefore, all results were
❑ultiplied by 0.12929 to normalize to one total source neutron. By blasfng
the source in this manner, the figure of ❑erit for FICNPcalculations
increased by a factor of two.

For the 3.68-MeV truncated fission apec:rum, 200 cm of concrete is
abut 25 mean free paths thick; for the full, unaltered spectrum, the 200-
cm-slab is about 28 mean free xths. In the first 10 cm, the average mean
free path is almut 6 cm. After only a few more centimeters into the
concrete though, the average ❑ ean free pth hcomes about 4.5 cm and
remains very closa to this throughout the 200-cm thickness. The energy
cutoff for the calculations was set at 0.00912 MeV (again this corresponds
to one of the group lmundaries) because enly a couple of percent of the
transmitted neutron dose comes from transmitted neutrons with an energy
less than this. Using this cu:off increases the figure of merit by a
factor of about three. There are 18 groups in the multigroup data above
0.00912 MeV. Furthermore, tb.is energy cutoff requires a smaller
computer-memory requirement,

To Illustrate the effect of the above energy cutoffs and photon
production and that the simplification for this academic paper may not be
valid for actual shielding problems, t4CNPwas used for a 10-m?.nute
calculation with none of the above cutoffs and also accounted for photon
production for a 100-cm radius by oniy a 100-cm-thick concrete slab. The
figure of merit for the total neutron dose is 8.6 using splitting, and the
total neutron dose is 8.1 x 10-13 ● 8.5% mrem/source neutron. The dose
from transmitted neutrons above 0.01 MeV la 7.5 x 10-13,and the total
photon dcse is 1.7 x 10-13 ● 0.5% mrem per eource neutron.Almut 49% of the
photons were started In the energy range 2-5 MeV, 2.7 MeV of photon energy
were atarced on the average per neutron, and the average waight of photons
started was 0.87 per neutron. Another run was ❑ade but with the neutron
●nergy cutoff at 0.01 MeV. The figure of merit increased to about 56, the
total neutron dose hcame 7.2 x 10-13 * bxl and the photon dose dropped to
2.6 X 10-15* 18%. Now about 14% of the photons start ktween 2 and 5 MeV,



0.24 MeV of photon energy were started per neutron, a. the average weight
of photons started was 0.14 per neutron. For 14-MeV Jleutrons incident on
100 cm of concrete and using no cutoffs or approximations, about 8% of the
total dose comes from photons.

100-c-Radius Problem

With the pencil-beam source, the axially penetrating leakage is
8.2 x 10-9 * 4.4%, the transverse leakage is 1.9 x lG-5, and the
backscatter leakage is about 35%. Because of the negligible transverse
leakage, the problem geometry is equivalent to a homogeneous, semi-infinite
slab. About 9.5% of the neutron weight is lost to capture.

In a purely analog case (no splitting, survival biasing, or anythi~g
else), except for source energies greater than 3.68 MeV, 21484 source
neutrons were started in two minutes of computer time. At 50 cm there were
5409 (25%) neutrons, 83 were at 100 cm, and none were at 150 cu.. This is a
very clear example of why variance-reduction techniques are necessary.

Adding survival biasing and weight cutoff with WC1 = 0.5 and
WC2 = 0.25 to tlie above example, a slight improvement is noriced i.n the
same two minutes of time: 19336 source particles were reduced to 5477
(28%) at 50 cm, to 102 at 100 cm, and to none at 150 cm. Only three tracks
were lost to the Russitin roulette part of the weight cutoff game. With WC1
and WC2 increaaed to 1.0 and 0.5 respectively, 19432 source particle~ were
reduced to 5461 (28%) at 50 cm, to 106 at 100 cm, and to none at 180 cm.
Only 121 tracks Weie lost to Russian roulette. In this problem survival
biasing and weip’t cutoff help a little but not a significant amount. It
is a generally accepted practice, however, to use these two tec,,niques
routinely (naturally there are exceptions).

To add geometry splitting with Russian roulette, the concrete cylinder
was subdivided axially into cells 10-cm-thick by adding plane spljtting
surfaces; 10 cm was chosen because lt is a convenient number and because it

C ❑ean free paths &tween splitting surfaces (based on anallows a couple o.
average of 4.5 Cm for a mean free path averaged over collisions). Cell
thicknesses of 15 cm worked equally well. The problem was run for half a
minute with the importances of all cells set to unity. Part of the
standard summary output of MCNPis the track population in each cell, and
wherever the population dropped by a factor of two, the importance of that
cell was doubled relative to the adjacent cell in the direction of the
source. In some places the two-for-one splitting was not enough, so
four-for-one splitting was occasionally used. If an incremental cell
thickness less than 10 cm ha~ been chosen, two-for-one splitting could have
been used throughout. Conversely, 8reater than 10-cm increments would have
led to a more consistent use of four-for-one splitting. A goal is to try
to keep the population roughly constant, say within 50%.

For thiB particular problem, there appears to & little difference in
computer efficiency between two-for-one and four-for-one splitting. Other
ratios can also & used as necessary. ‘f’wo-for-one splitting makes it



eaeier to level the population, but it requires the user to add more cells
and eurfaces to the problem 8etup. Four-for-one splitting requires less
input from the user and less arithmetic for the computer, but it is harder
to level out the population. Going beyond four-for-one splitting
introduces greater risk because that implies a fairly large reduction in
the population before it is built back up. The darger is that once a
sample population deteriorates to 9 small size, source Information
associated with the eample can & lost. Once information is lost, it can
never & regained. For example, in the analog problem mentioned earlier,
at 170 cm we could have introduced the first splittilg surface and split
21484-for-one. The track population would be hck to its original size,
but then the true energy spectrum would h represented by one discrete
energy. The old saying about squeezing blood out of a turnip Is very
appropriate here.

Three iterations of half a ❑inute each were used to set the
importances. The ratio of importances between cells, the actual importance
a~aigned to a cell, and th~ track population in each cell are shown in
Table 3 for 91440 source neutrons. In this final mn, weight cutoff was
played with WC1 = 0.5 and WC2 - 0.25 (both times the starting weight of the
neutrons), resulting in 4233 tracks lost to Russian roulette. In the
splitting game, 1118990 tracks were erected, but 460729 were lost to
Ruqsian roulette. Note that in cell 18 the population is too high.

Table 3. Splitting in the 100-crc-Radius by
200-cm-Thick Concrete Problem

Importance Track
Cell Ratio Importance Population

(Soulce) 1

:
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

(Tally) ~~

1
1
2
2
2
2
4
2
2
2
2
4
2
2
4
2
2
4
?
2

1

1
2
4
8

16
64

128
256
512

1024
4096
8192

16384
65536

131072
262144

104 I3576
2097152
4194304

94215
69498
86168
86972
82441
78332

140593
118175
101254

866?8
75750

127292
102290

89315
15184@
12311tl
107322
18084?!
142741
lnCG16

. .—— — —. —— .



For this problem the transmitted leakcge is 8.21 x 10-9 * 4.4% for
neutron leakage, the transmitted dose is 1.22 x 10-17 * 4.5% mrem per
source neutron, the :ransmitte~ flux is 4.10 x 10-13 ● 4.3% neutrons/cm2,
the leakage a~caping through the curved cylindrical surface is 1.91 x 10-5
● 16% neutrons, the laackscattered leaLage is 4.S1 x 10-2 * 0.4%, and 6.7 is
the f~gure of merit.

Other splitting gamee can also & played. The most obvious is a
combination of axial and radial Bplitting. With radial splitting, one
could set up a cone as a splitting eurface with its vertex at the sourcz
point and then intersecting the edge of the axit face. Secondly, rather
than a cone, a concentric cylinder could k used with it~ radius half that
of the outer cylinder, It turns out that neither of these approaches
results in much (if any) gain in this problem. What small amount is 8ained
in reducing 02 ie lost by an increase in t kcause of the added arithmetic
for the computer.

lhere is a frequently-heard rule of thumb for geometry splitting that
says split two-for-on(l every ❑ ean free path, bt you do not hear if this
muns a ❑ ean free path based on source energy or average energy of the
particles in the geometry. In thirn prcltlem, a mean free path hsed on a
source energy ie akmut 8 cm and abut 4.5 cm averaged over collisions.
Splitting ~wo-for-one every 4.5 cm in only a 100-cm-thick slab of concrete,
1 source neutron had ken split into ● population of 440 at 50 cm and 12740
at 100 cm and required 0.96 minutes of computer time. Splitting two-for-
one every 8 cm in a similar 100-crthick slab of concrete was better; 333
source neutrons required 0.52 minutes of computer time and were split into
a population of 1597 at 50 cm and 1904 at 75 cm. Obviously, this rule of
thumb applied by either method leads to oversplitting.

Usin8 the wei8ht window with onl
$

aulvlval biasin8 and nothing elb?.
the transmitted leakage is 0.26 x 10- * 9.3% with 6.3 for a figure of,
merit. The lower wei8ht tmund in the source cell was chosen to be 50%
lower than the particles’ source weight. The lower wetght lmund for the
rest of the cells was chosen to be a factor a less than the previous cell’c
lower weight bound where u for cell i was chosen as

(starting weight)ai = transmission obtained (7)
by previuus short run.

The upper weight Ixmnd was chosen to b five times the lower weight Mund.

Using the exponential transform with survival b!asing, no weiSht-
cutoff game, and a tranaform-biasin~ parameter of 0.7, only a very short
run was required to eee a poor performance. The figure ef mrit wmn 1 .50
●nd the transmitted leakage wao 4.86 x 10-8 * 39% which ie too high by ~
factor of six - in other words, completely tntreliable,

Adding to the c:.ponential transfonaation a weight-cutoff game (hit m.’t

the weight window) that is dependent on cell importances had the reeult
tlmt ●fter 4.6 minutes of computer time thu transmitted leakage wan



5.22 x 10-9 * 19.2% with a ffgure of merit of 4.2; after 10 minutes,
8.22 x 10-9 t 26.7Z; and after 17.6 minutes the leakage waa 8.06 x 10-9
● 18.4 with 1.7 as the figure of mrit. This example demonstrates the
value in vacching thl? behavior of a eample ❑ean and its variance during the
progress of a calculation. If either in unstable, the sample man 1s
unreliable. By not watching this behavior, a result (such as the leakage
of 5.22 x 10-9) may be incorrectly accepted as satisfactory heed on an
apparently low variance.

Applying the weight wiadow and exponential transformation together
produced the &at of all results with a figure of merit of 22.6 and a
transmitted leakage of 3.49 x 10-9 * 3.0%.

The multigroup code MCMGusing 30 groups and geometry splitting
determined in the same awnner as for MCNPwas used on this problem. The
figure of merit was 11.9, but the transmitted leakage wao 2.17 x 10-9 ●

5.6% which 18 low by a factor of four. Both the continuous-scattering
angle dnd MORSEdiscrete-scattering angle treatments were used. No
difference btween the two was observed. For optically thin transmissions,
however, the continuous treatment is superior.

MCNPitself can be used in a pseudo-multigroup faehion by using our
discrete reaction cross-section set DRXS. These cross sections are
equivalent to the regular continuous-energy cross sections used by MCNP
except that the reaction cross sections have ken collapsed into 240
energy groups, Using MCNPand these discrete cro~s sections along with
geometry splitting on this problem, the transmitted leakage is 5.08 x 10-9
* 6,82 with 8.0 for the figure of ❑erit,

All of these results are summarized in Table 4.

To our surprise, the performance of the weight window may be
relatively insensitive to the size of the window, This problem was tried
with the ratio of the upper to lower lmund set at 400 to compare with the
ratio of 5 used throughout this paper, The factor of 400 is consistent
with a eimilar scheme used i,l MORSE. The results were virtually unchanged;
the ftgure of merit wae 1905 and the leakage waa 7.89 x 10-9 ● I016Z. This
implies tha~ it ie a very few ttacke with very large WeightS thet cause
tallying problems. The prodema caused by a Wef8ht dieperaion have long
teen recognized, but the true nature of’ the dispersion ❑ay not have been
fully appreciated.

The dramatic Improvement in the performance of the exponential
transform when it is used in conjunction with splitting at an upper weight
limit seemc to ind~cete that a substantial fraction of the tally variance
ie ●ssociated with very high-weight particles. Particles can aecumulat~ a
high weight by traveling against the transform vector for pnrt of theil
trajectory. With eplitting at the upper weight limit. the distribution of
tally scores per source Perticle for each high-weight perticle is shif~ed
from e binary distributicw of scoring or not scoring In one lump to s
auperpoaftlon of binary diatributiona with emaller component~. The net



result Is to reduce the variance while leaving the tally mean unchanged.
The computational time involved is relatively small bcause the high-weight
particles are relatively infrequent, and eo a net gain is achieved in the
figure of merit.

The biggest surprioe we had in doing the calculation for this paper
was the disagreement between the continuous-energy and multigroup results.
We see from Table 4 that the M(2?4Gmultigroup results underpredict the
continuous-energy results by a factor of almost 4. The group cross
sections consist of 30 neutron groups from the ENDF/B-IV evaluation with a
weighting spectrum which is a fission spectrum matching a l/E spectrum fot
the energy range of intereet. 9 In Table 5 we compare the partial leakage
fi in the direction of penetration at 15-cm intervals through the concrete
for continuous-energy and multigroup-collision treatments. It can k seen
that the discrepancy appears to grow systematically. TE.e column labeled
“DRXS” is a calculation with the 240-group discrete-reaction cross aectiona
using MCNP. The results of the DRXS calculations fall in ~tween the
continuous-energy and the 30-group MCMG results. One may conclude that an
energy eelf-ahieldin~ effect introduces a discrepancy into the multigroup
results and that the ❑agnitude of th~ discrepancy may b quite significant
for deep-penetration applications using sitandard cross-section sets.
Although this effect has been reported in transport through pure materials
(most notably in thick iron shields), it might not lx expected in mixtures
such as concrete with significant ❑asking of cross-eection windows and the
presence of hydrogen to lessen the importance of windows.

Table 4. Summary of Results for 100-cm-Radius
by 200-cm-Thick Concrete Cylinder

Transmitted Computer
Method Leakage % Error YOM Minutes——.

MCNP, sditting 8.21 X 10-9 4.4 6.7 77

MCNP, wei~ht 8.26 X 10-9 9.3 6.3 18.4
window

MCNP, exponential 4.06 X 10-8 39 1.5 4,4
transformation

MCNP, ●xponential 8.06 X 10-9 18 1.7 17.6
transformation and
wei8ht cutoff

MCNP, ●xponential 8.49 X 10-9 3.0 22.6 49.2
tranafonaatfon and
weight window

MCMC, cplitting 2.17 X 10-9 5.6 11.9 26.8

MCNP, discrete 5.08 X 10-9 6*R 800 27s0
reactions, cplittin8

— — - .—.— .,.. —— .— . . . . .. .



Given the discrepancy ktween ccmtinuoua-energy and multigroup Monte
Carlo, an obvioue question becomes what iB the result of an Sn
calculation. Therefore, we made an Sn calculation with the one-dimensional
Sn code ONETRAN.lo The geometry was assumed to be a 200-cm Portland
concrete slab of infinite lateral extent. An infinite extent IB a very
good approximation since the Monte Carlo calculations indicated the
transverse leakage to be about 2 x 10-5. Using the truncated fission
●pectrum (l.c., source energie’ greater than 3.68 MeV) and the same 30
group ENDF/B-IV cross-section met as used with UCMG, good convergence was
achieved with ONETRANusin Lr of 1.66 cm and an S-8 Lobatto quadrature;

$the leakage was 2.45 x 10- . Using the full fiesion spectrum source, the
leakage was 2.71 x 10-9. Good convergence with a Gauss quadrature was not
achieved until an S-16 or greater quadrature was used. There are a :ouple
of conclusions: (1) Sn agrees with the MCMGresult of 2.17 x 10-9 * 5.6%
within two standard deviation, and (2) Sn requires a Lobatto or high-order
Gauss quadrature for good convergence in deep-penetration problems.

To verify that the transverse leakage was truly negligible and that
the one-dimensional Sn and MCYGresults were comparable, an MCMG
calculation was performed with infinite radial extent for the 200-cm-long
concrete cylinder. The results were essentially identical to those with
the 100-cm radius.

To further complete the picture (Imt not belabor the point), ONETRAN
was also used with a 30-group ENDF/B-V multigroup cross-section act. Tile
transmitted leakage was virtually identical with the ENDF/B-IV results from
0NETR4N and MCMG. Finally, MCNPcalculations were made with modified
240-group discrete-reaction cross sections bsed on ENDF/B-V. The cross
eections for both silicon and oxygen were mc.dified to accurately represent
the large window in the total cross section for each nuclide, at 0.145 MeV
for aillcon and 2.35 MeV for oxygen. The result was the same as with the
regular discrete cross sections in which the windows are averaged out.
This indicates the difference between continuous energy and multigroup
treatments is due to a self-shielding effect.

Another potential method to improve the results at the exit surftice is
to surround the curface with a DXTRANsphere, DXTRAN, however, is
generally onl} useful in situations where it is difficult to get tracks by
a random walk to a particular place in the geometry in order to make a
tally. Thin is not the case here since by geometric splitting an abundance
of tracks sets to the ●urface tallies. In this case DXTIUN makes the
problem more inefficient by adding additional arithmetic complexity for the
computer to handle. However, if one ICI interested in calculating the flux
●t a point in the center of the axit wrface, relatively few tracks are in
the vicinity of ●ny given point on the eurface. A surface tally therefore
1s uaelese, and a point detectar 10 required. Ilacing a DXTRANsphere
●round ● detector can improve the efficiency of a d~tector calculation
ni8nificantlya



Table 5. Comparison of Partial Leakage
aa a Function of Method and Thickness

pm=
Surface J+?4CN’F J+DRXS tiCMG ,

15 cm

30

45

60

75

90

102

120

135

150

165

180

200

7. 44E-2
(.68%)

2. 66E-2
(6.6%)

8.07E-3
(1.5%)

2. 26E-3
(1.9%)

6. 14E-4
(2.4%)

1.61E-4
(2.9%)

4.25E-5
(3.5%)

1.14E-5
(4.1%)

3. 09E-6
(407%)

7.99E-7
(5.3%)

2a 13E-7
(6.0%)

5.63E-8
(6.8%)

8.20E-9
(7.9%)

7. 38E-2
(.62%)

2.58E-2
(i.0%)

7.65E-3
(1.4%)

2.14E-3
(1.8%)

5.69E-4
(2.2%)

1.48E-4
(2.7%)

3.81E-5
3.2%)

9.62E-6
(3.7%)

2.41E-6
(404%)

6.18E-7
(5.0%

1. 59E-7
(5.7%)

3.91E-8
(6.1%)

5. 08E-9
(6.8%)

7.35E-2
(.46%)

2.48E-2
(.74%)

7, 00E-3
(1.0%)

1.79E-3
(1.3%)

4.40E-4
(1.7%)

1.06E-4
(2.1%)

2. 55E-5
(2.5%)

5.89E-6
(3.0%)

1.40E-6
(3.4%)

3.31E-7
(3,9J)

7.77E-H
(4.4%)

1.81E-8
(4.9%)

2. 17E-9
(5.6%)
— —

20-cm-Radius Problem——

1.01

1.03

1005

1.06

1.08

1.09

1.12

1.1$

1.28

1.29

1034

1*44

1.61

2.01

1.07

1.15

1.26

1040

1.52

L.67

1.94

2.21

2.41

2.74

3.11

3.78

Thfe problem ia identical to the ioo-cm-radiua problem in every respect
●xcept for the radtus, The smaller radius now makee the tranaverue and
backecnttered leakages almost identical, 3.84 x 10-2 * 0,4%, This probl~m



runs only slightly less efficiently than the 100-cm-radius problem. The
reason IS that although it is harder to get particles through the cylinder,
lees time ia spent on particles wandering around radially. They are killed
by escaping.

This problem was done in only two ❑odes: splitting with MCNPsnd MCFT’
with a combination of the weight window and exponential tranafomation.
The exponential transformation by ittielf on this problem performs very
poorly. The importances for splitting were set using the same technique as
&fore, and another (but different) combination of two-for-one and
four-for-one splitting resulted. The importance in the last cell wsa
21233664 as compared to 4194304 for the 100-cm-radiue problem. For the
case of splitting, the transmitted leakage 10 7.50 x 10-10 ● 5% with 6.0 as
a figure of ❑erit. The weight window and transformation (biasing parameter
is again 0.7) result is 8.17 x 10-10 ● 4.9% with 21.5 as a figure of merit.

From the calculation with splitting, the transmitted neutron dose IS
2.74 x 10-17 * 7.0% mrem/per neutron, and the transmitted flux ie
8.06 x 10-13 ● 6.9% neutron/cm2.

DXTIUN is also inappropriate for this caeu as “ was for the 100-cm-
radius case; the figure of merit 16 reduced by its .;.

BENT-PIPE PRCqLE?l

#

This problem is alao divided into two parts, bth of which are much
less demanding than the previous 200-cm-concrete problem. In lmth caaes a
20-cm-radius pipe that IS 240-cm long along the axis has a 90° bend in the
center and is jacketed concentrically by a 20-=cm-thick region of ordinary
Portland concrete. In the first case, the pipe is filled kith liquid
sodium. and in the second came the pipe is void. The geometry is shown in
Figure 2. With the sodium, the attenuation from one end to the other is
●bout 106 and with the void ●bout 103,

b— 160cm ~1

4 m eocm

1

Figure 2, Bent Pipe Jacketed by Concrete.



The source for Imth cases is the same. It is an area source incident
on one ●nd of the pipe (but not including the jacket) with the energy and
angular diaitribution given by

(8)
(1/E spectrum)

= O otherwise ,

where P = +1 iB the cosine of the coaxial direction at the entrance plane.
The procedure uBed to sample this distribution is given in the Appendix at
the end of this paper. Constraints on the source are 8.32 eV < E < 184 keV
and 0.8 < p < 1.

The tally used to cr,mpare the various ❑ethods Is the leakage
transmitted out the opposite end of the pipe (pipe only and n~>t iccluding
the jacket) within the direction 0.8 < u < 1,0 where P = +1 is Li,e cosine
of the coaxial direction at the exit plane. Results of other tal..ies will
be reported, however. The energy cutoff in all caees is 8.32 C“V.

Sodium-Pipe Problem

The eodium
temperatures of
design features
reactor coolant

density used is 9.705 g/cm3 which is ●ppropri~ce for sodium
approximately 1000°C. This problem is representative of
in fast breeder coGlant loops and possibly in fusion
loops.

With only curvival-biasing and a weight-cutoff game, in two minutes of
computer time, no tallies were made. In fact, out of 33878 source
neutrons, only nine had made it around the 90° bend, No particle got
within 40 cm of the pipe exit.

In this problem, the me~n frue path averaged over collisions for
sodium 1s about 16 cm and about 2 cm in the concrete. Therefore, plane
splitting surfaces were plaited acrose the axie of the pipe at 20-CIU
intervals. A 45° plane was also added where the two legs of the pipe
intereect. Radial spllttll~ was used In this problem by adding two
concentric cylinders within the concrete jacket to be used as nplitting
surfaces. The first cylindrical mplitting surface was placed 2 cm ineide
the concrate jacket, and the eecond was placed outward in the radial
direction another 2 r.m.

To set the ~.mp~rtances, two runs of half a minute earh were made to
level. the track population in the pipe htween the source plane and the
tally plane, Relative to the corresponding axial importance in the
pipe, the radial importances were decreaeed by a factor of two for each of
the first two eleeves and then a factor of four for the outer sleeve. To
show that this elaborat~ radial tatup is really not necessary, ●nether run
was made with only one radial--plitting eurface in the middle of the
concrete jacket, The importancaa of the inner radial cells were reduced by



a factor of two and by another factor of four for the outer radial cello.
The figure of merit was 62 with the two concentric eplitting surfaces and
58 with only one in the center of the jacket. The two surfaces are mre
●ffective in killing outward-lmnd tracks and maximizing lxnckecattered
tracks, but the extra cells and surfaces required rmre computation time.

In applying the weight window to the sodium pipe, the lower Weiuht
bund was derived ftom the set of importances used in the run with
splittin~. The lovsr lmund was taken to ba 3/11, where Ii is the
importance for cell i. The factok three was chooen so that the source
‘Jtrticles would start within the weight window. The uppe- weight tmund was
taken to be five times the lower weight bound based on pr..ious with the
weight window, it was used with the biaaing parameter p set to 0.4 in one

“ case and to 0.7 in another.

A multigroup run was made with MC!4Gusing geometry splitting with
different axial-splitting planes and with one concentric eplitting surface
midway between the inner and outer surface of the concrete jacket.

Results of the above casee are surmnarized in Table 6.

Table 6. Results of Bent Sodium Pipe

Tranamittecl
Leakage Computer

Method (.8<p < 1) % Error FOM Minutes

MCNP, eplitting 5.83 X 10-7 4.1 62 9.6

MCN?, weight 6.38 X 10-7 6.4 54 4.6
window

MCNP, weight window, 5.70% 10-7 5.7 67 4.6
expo. tranaO(.4)

MCNPweight window, 5.93 x 10-7 6.3 55 4.6
expo. trans.(.7)

MCMG, splitting 5.19 x 10-7 5.0 46 8.7

MCNP, splitting, 5.92 X 10-7 9.9 22 4.6
DXTMN

DXTRANin conjunction with geometry splitting was tried for a couple
of runs with MCNPt The DXTRANsphere wan placed around the sodium at the
●xit tally planet A game was played with l)XTRANsuch that ●ll
contributions to the l)X’TRANsphere were ●ccepted within four mean free
patho, and ● Russian roulette game wao playad wi-t’ contributions hyond
four (a ●hnrt run indicated ●bout 90% of the contributions were LxIing ❑ade
within four wan free pthc), In one came DXTRANwas tried tith the setup
with ●xial-cpli:ting surfacee ●very 20 cm and with two concentric-splitting
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surfaces in the concrete jacket; the figure of merit dropped fi~m 62 to
22. Secondly, DXTR4Nwas tried with a very simple setup using one
axial-splittinR surface (four-for-one) at the 45° intersection of the
cylinders and 4 second splitting surface (one-for-two) at the
eodi~~n-ccflcrete interface; 0.7 was the figure of merit.

Results other then th~ transmitted leakage may b of interest. Using
MCNPwith geometry eplitting, 56.5% of the otarting weight was 10BC to
energy cutoff, 0.3% to ●scape through the curved jacket, 0.9% to capture,
anti 41.2% to bsckscatter from the source plane, The transmitted leakage
out of the sodfum vss 3.11 x 10-7 ● 4.3% between 37° and 90° relative to
the axle of the pipe at the exit and 5.83 x 10-7 ● 4.1% between 0° and
370. The leakage transmitted through the exit plane lmunding the concrete
jacket (an annular disk excluding the nodium in the center) was 6.27 x 10-8
L 7.5X between 370 and 90° and 5.05 x 10-8 + 8.3% between 0° and 37°. The
neutron dose transmitted through the eodi’lm exit plane was 1.28 x lC-15 *
4.4% mrsm per neutron , and the dose trar~smitted through only the concrete
at the exit plane was 6.39 x 10-17 * 8.6% mrem per neutron. The flux
transmitted through the sodium exit plane wad 1.01 x 10-9 ● 4.1%
neutrons/cm2 and 5.02 x 10-11 * 7.3% neutrons/cm2 through the cone-ete exit
plane.

~id-Pipe Problem

This probl~m is identical to the eodlum-pipe problem except chat the
sodium La replaced by a void. Two surprises came from this problem:
(1) intuition led to preliminary problems with geometry splitting, and
(2) DXTR4R performed very impressively.

Trying this ~robl~~ without any variance-reduction techniques, in two
❑inutes of computer time 31449 neutrons started but only 358 got past the
90° bend, &nd 20 actually got to the exit tally plane.

The oplitting aurfacea were very similar to the sodium-pipe setup:
axial planes every 20 cm and twu interior concentric cylinders (one 4 cm
into the concrete jacket from the void and the other another 4 cm into the
jacket). The final axial importance hfore the exit was 4096 where it was
2519424 with the sodium. The attenuation from the source to the exit is un
the order of 103,

Initially the radial importance were set as with the sodium:
relative to e 8iven axial cell in the void, the first radial cell had an
importance a factor of tvo less, the middle radial cell importance another
factor of two leaa, and the outer radial cell a factor of four leas than
the middle cell. This setup led to a figure of writ of 16 which was
surprising since thu attenuation la three orders of ma8nitu3e leus than
with sodium where the figure of merit was 62.

Looking at the HCNP nummary information, it was roted that each
neutron created shut 7 trark~, and each neutron had :+lmut 6.6 collisions.
Thie ●ayo tr:at on the averagu ●very time ● track had s collision, it was



Bplit . This was the clue to the problem: the importance of the inner
Eleeve of the concrete jacket was a factor of two less than he adjacent
void region which meant that a track entering the concrete .L”~ the void
underwent Russian roulette with 50% survival. If the track backscattered
into the void, it was split two-for-one tmt then immediately wsnt to the
other side of the void where Russian roulette was played again, etc.
Obviously this is very inefficient.

The next step was to set the importance of the inner sleeve equal LC
the importance of the adjacent void. The middle-sleeve importance wos then
reduced by a factor of two relative to the inner sleeve, and the
outer-sleeve importance was reduced by a factor of four relative to the
middle sleeve.

Playing other splittina games such as changing the thickness of the
concrete sleeves and reducing the number of radial sleeves from three to
two had relatively little effect.

The weight window ~ itself was tised successfully in the problem; the
exponential transfomnation is not applicable. The tmunds of the windows
were set hsed on experience and by experimenting with a couple of short
runs and watching the bhiavior of the sample variance.

MCMGwas used with geometry splitting incorporating one concentric
splitting surface in the center of the concrete jacket. Furthermore, two
scattering kernels were tried: (1) with a continuous-scattering angle and
(2) with the HORSEdiscrete-scattering angle.

Results of these runs are summarized in Table 7.

Table 7. Results of Bent-Void Pipe

Transmitted
Leakage Computer

Method (.8< P<1) Z Error FOM Minutes..—.

MCNP, splitting 1008 x 10-3 5.6 33 9.6

MCNP, weight 1.10 x 10-3 4.2 53 10.7
WInd ow

MCMG, splitting, 1.11 x 10-3 3.7 60 12.2
cont. ●ngle

14CM, splitting, 1.07 x 10-3 3.8 57 12s1
discrete angle
—... - . ——- - .— .—.

The MCNP-with-eplittin8 figure of merit is lees than the others by
●bout a factor of tWCI ●nd less than the sodium-pipe figure of merit also by



a factor of two. The reason for troth of these observations is unclear at
this point. It can be argued that the void pipe should tilke longer than
the sodium pipe ~cause with the void all scores at the t.illy come from
time-consuming backecattering. With the sodium, a large nuzIlm of tracks
can get to the tally plane wfthout having to bckscatter.

DXTRAN wtth MCNPwas tried on this problem in four cases: (1) with
the atmve splitting betup that gave the 33 figure of ❑erit, (2) with the
same geometrical setup (all the cells and surfaces set up for splitting)
but with importances set to unity, (3) nu splitting and all internal cells
and surfaces removed that were required far the earlier splitting, and
(4) all the extra cells and surfaces etill removed but split two-for-one
axially where the two legs of the geometry intersect at 45° and reduce the
importance of the adjacent concrete jacket by a factor of two relative to
the void. The impressive results are shown in Table 8. Tine weight window
was not used for any of these calculations, and there is a pot~ntial for
further DXTRANimprovements by using it. All runs were for 4.6 minutes of
computer time. Russian raulette was played for all contributions to the
DXTlL4Nsphere hyond four mean free paths. In all cases the radius of the
oute~ sphere was 30 cm, and the radzua of the inner sphere was 20 cm.

Table 8. DXTFLANResults

Transmitted
Leakage

Case (.8< P<1) % Error FOM

1 Splittirg, 1.07 x 10-3 3.8 148
complex geometry

2 no splitting, 1.06 X 10-3 400 134
complex geometry

3 no splitting, 1.08 X 10-3 3.3 135
simple geometry

4 ❑ild splitting, 1,04 x 10-3 3.0 243
simple ~eometry

Some conclusions may b drawn from these DXTRANcalculations. The
improvement from case 2 to case 3 points out the obvious: more cells and
surfacea require ~re arithmetic by the computer; they don’t come free.
Comparing case 1 and case 2 suggests that when you are ●lready doing a
pretty good job by one other technique, an additional technique adds little
more and may ●ven hurt (this was observed in the other probleme).
Comparin8 cases 3 and 4 suggests that there is usually profit in adding a
li~tle obvious help tn the random walk. Caees 1 and 4 suggest that a very
complex, ●laborate set-up may b overkill; not only does it take a person
longer to set up and debug a complicated geometry, it takes the computer a
lon8 time to get through it too.



Other results associated wilh this &nt-void pipe include about 1% of
the starting weight lost to escape through the curved jacket, 8% 10SL to
bckscatter, about 92% lost to energy cutoff, and c.4% lost to capture.
The leakage transmitt~d from the void at the exit plane between 37° and 90°
is 1.65 x 10-4 ● 5.7%, the leakage transmitted from the concrete at the
●xit plane between 0° and 37° is 7.67 x 10-5 ● 12% and 5.46 x 10-5 * 7.7%
~tween 37° and 90°. The neutron dose through the void at the axit la
1.65 x 10-12 * 5.8% mrem per neutron and 6.64 x 10-14 ● 9.0% through the
concrete. The flux through the void at the ~it is 1.16 x 10-6 * 4.7%
neutrons/cm2 and 5.25 x 10-8 * 8.4% neutrons/cm2 through the concrete.

CONCLUSIONS

It is virtually impossible to & able to aay when to use one variance-
reductioa technique or another. One needs to have many techniques at his
disposal. Furthermore, it is also virtually imp~ssible to h able to
prescribe how to use a particular technique. Experience in these wtters
has no substitute.

Despite the above disclaimer, we will attempt some generai
conclusions.

It appears the weight-window concept has merit when used in
conjunction with other techniques that produce a large weight dispersion.
It keeps from wasting time on low-weighted particlea and keeps a tally and
its variance from being overpowered by a few large-weighted scores.
However, we at Los Alamos have not had enough experience with this tool to
put it into MCNP permanently. We know relatively little abut how to set
the tmunds of the window - especially if enerey dependence is required.

The exponential transformation has very limited usc by itself. It
should not be used alone but in conjunction with something like the weight
window. The parformancc and especially the reliability of the
transformation are sensitive to the’ biasing parameter which, in our
opinion, makes this technique dangerous to use except for the experienced
Monte Carlo practitioner. We sometimes refer to the exponential
transformation as the “’dial-an-answer” technique, because the result of a
calculation frequently appears to bs a function of the biasiing parameter.

Geometry splitting with Russian roulette is our most frequently-used
technique. Although other schemes may tuy more in particular situations,
aeometry eplitting will virtually #lways give good returns. Furthermore,
it Is easy to understand and reliable. An important aspect that is
apparent from the calculations in this paper is that performance is fatrly
insensitive within a broad range to how the splittin8 is implemented
(two-for-one, four-for-one, where the surfaces are located, etc.)

Furthermore, it is not just ●nou8h to look at a figure of merit and a
final sample error. You must also look at the eample mean and its ●rror at



frequent intervals to rmke sure they have BC tied down and converged on a
reliable result. In other words, look at th. variGnce of the variance.
For example, after a relatively few histories , a point-detector flux may
have an indicated error of 10% but be in actual error by several factors.
After a few more histories, both the flux and its error could lx perturbed
significantly. This procedure was not emphasized earlier tn the paper, but
it was used. It is simply wise practice - because it WY hive the only
clue of an unreliable result.

Group X-6 is experimenting with analytically calculating the variance
of the variance (or error of the error) and most of the MCNPcalculations
for this paper were done with a ❑edification to MCNPfor this purpoee.ll
We recognize that there is very little quantitative information in the
fourth moment, but qualitatively it appears that whenever the error of the
error is of the same order as the error (troth about 5 or 10%, for example)
then the sample mean is reliable. But if the error is atnut 10% and the
error of the error is 60%, the mean is unreliable.

One valid rule of thumb is to always make a few short, experimental
runs to get a feel for the proble~ and to see the effect for different
techniques and parameters. The code you are using should automatically
provide you with enough basic information to allow you to evaluate and
understand the run and its attributes. It has ken our observation that
the ❑ ore ●xperience a person has, the more reliance is put on preliminary
runs. The less experience a person has, the more likely a $ob will b set
up aa quickly as possible, a long run attempted, and whatever comes out
believed.

Finally, this paper has prohbly generated more questions than it has
a:lsuered - especially in the a%ea of multigroup calculations. A160, as
applications bcome increasingly more complicated there are other
important and interesting topics such as the effect of representing a
complex three-dimensional geometry by a lower-dimensional model. We look
forward to addressing these and other questions in the future.
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Append ix

1. Fiesion-Spectrum Groups for MCMG

The source fraction per group, Sg, ie determined from

E

Sg =

/0
<

~ ~ e-E/T

Ah T
dE, T = 1,30 MeV .

E +1

Group Lower Bound, MeV se

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

15.0
13.5
12.0
loot.!

7.79
6.0;’
3968
2.865
2.232
1.738
1.353
0.823
0.50
0,303
0.184
0,0676
0,0248
0.00912

3.0380E-5
7.8639E-5
2.3568E-4
1.1626E-3
5.3203E-?
1.?5idE-2
1.0418E-1
9.1383E-2
1.0t377E-l
1.1525E-1
1.I097E-1
1.8153E-1
1.1963E-1
6.9450E-2
3.6918E-2
2.8169E-2
6.6880E-3
1.5188E-3—— -
0.99955

—,—— .-..—— . . . .. . . ... .—— ..— —

2. Sample Energy E from Fission Spectrum

T = 1,30 MeV
~ = 31’/2 - 1.95 MQV

Let & bc a random number (0,1),



.

\

3. Sample l/E Energy Distribution, Angular Distribution, and Spatial
Distribution

Let~ be a random number (0,1),

(a) Energy: f(E) = (.10)/E 8.32 eV < E < 184 keV

E = 0.164e-10~

(b) Angular: f(p) = const, 0.8<p<l

-0 otherwise

p = 0.8 + 0s2:

p - +1 is along y-axis

The direction cosines (UpV,W) = (0,1,0) ❑ ust be rotated through the
polar angle cos-~l and through an azimuthal angle sampled uniformly from
(0,2W).

(c) Spatial: y= O

X2+Z2< 202 ,


